Frequenzgang des laufenden Mittelfilters Der Frequenzgang eines LTI-Systems ist die DTFT der Impulsantwort, Die Impulsantwort eines L-Sample-gleitenden Mittelwerts Da der gleitende Mittelwert FIR ist, reduziert sich der Frequenzgang auf die endliche Summe We Kann die sehr nützliche Identität verwenden, um den Frequenzgang zu schreiben, wo wir ae minus jomega haben lassen. N 0 und M L minus 1. Wir können an der Größe dieser Funktion interessiert sein, um zu bestimmen, welche Frequenzen durch den Filter ungedämpft werden und welche gedämpft werden. Unten ist ein Diagramm der Größe dieser Funktion für L 4 (rot), 8 (grün) und 16 (blau). Die horizontale Achse reicht von Null bis pi Radiant pro Probe. Man beachte, daß der Frequenzgang in allen drei Fällen eine Tiefpaßcharakteristik aufweist. Eine konstante Komponente (Nullfrequenz) im Eingang durchläuft das Filter ungedämpft. Bestimmte höhere Frequenzen, wie z. B. pi / 2, werden durch das Filter vollständig eliminiert. Wenn es aber die Absicht war, ein Tiefpassfilter zu entwerfen, dann haben wir das nicht sehr gut gemacht. Einige der höheren Frequenzen sind nur um einen Faktor von etwa 1/10 (für den 16-Punkt-Bewegungsdurchschnitt) oder 1/3 (für die Vierpunkt-gleitender Durchschnitt) gedämpft. Wir können viel besser als das. Der oben genannte Plot wurde durch den folgenden Matlab-Code erzeugt: omega 0: pi / 400: pi H4 (1/4) (1-exp (-iomega4)) ./ (1-exp (-Iomega)) H8 (1/8 ) (1-exp (-iomega)) - (1-exp (-iomega)) - Geispiel (Omega , Abs (H4) abs (H8) abs (H16) - Achse (0, pi, 0, 1) Copyright-Kopie 2000- Universität von Kalifornien, Berkeley Ich brauche einen gleitenden Mittelfilter mit einer Grenzfrequenz von 7,8 Hz. Ich habe gleitende durchschnittliche Filter vor verwendet, aber soweit ich weiß, ist der einzige Parameter, der eingegeben werden kann, die Anzahl der zu durchschnittlichen Punkte. Wie kann sich dies auf eine Grenzfrequenz beziehen Die Inverse von 7,8 Hz beträgt 130 ms und Im arbeiten mit Daten, die bei 1000 Hz abgetastet werden. Bedeutet dies implizieren, dass ich sollte eine gleitende durchschnittliche Filter-Fenstergröße von 130 Proben verwenden, oder gibt es etwas anderes, das ich hier fehlte, ist der Filter, der in der Zeitdomäne zu entfernen verwendet wird Das Rauschen hinzugefügt und auch für Glättung Zweck, aber wenn Sie die gleiche gleitende durchschnittliche Filter im Frequenzbereich für Frequenztrennung dann Leistung wird am schlimmsten. So dass in diesem Fall verwenden Frequenzbereich Filter ndash user19373 Feb 3 at 5:53 Der gleitende Durchschnitt Filter (manchmal auch umgangssprachlich als Boxcar-Filter) hat eine rechteckige Impulsantwort: Oder anders ausgedrückt: Denken Sie daran, dass eine diskrete Zeit Frequenz Frequenzgang ist Gleich der diskreten Zeit-Fourier-Transformation ihrer Impulsantwort, können wir sie wie folgt berechnen: Was am meisten für Ihren Fall interessiert ist, ist die Größenreaktion des Filters H (Omega). Mit ein paar einfachen Handgriffen können wir, dass in einer leichter zu begreifen Form erhalten: Das ist nicht aussehen kann leichter zu verstehen. Allerdings wegen Eulers Identität. Erinnern, dass: Daher können wir schreiben, die oben als: Wie ich schon sagte, was Sie wirklich besorgt ist die Größe der Frequenzgang. So können wir die Größenordnung der oben genannten zu vereinfachen, um es weiter zu vereinfachen: Hinweis: Wir sind in der Lage, die exponentiellen Begriffe aus, weil sie nicht beeinflussen die Größe des Ergebnisses e 1 für alle Werte von Omega. Da xy xy für irgendwelche zwei endlichen komplexen Zahlen x und y ist, können wir schließen, daß die Anwesenheit der exponentiellen Terme die Gesamtgrößenreaktion nicht beeinflußt (sie beeinflussen die Systemphasenreaktion). Die resultierende Funktion innerhalb der Größenklammern ist eine Form eines Dirichlet-Kerns. Sie wird manchmal als periodische sinc-Funktion bezeichnet, weil sie der sinc-Funktion etwas im Aussehen ähnelt, aber stattdessen periodisch ist. Wie auch immer, da die Definition der Cutoff-Frequenz etwas unterspezifiziert ist (-3 dB Punkt -6 dB Punkt erste sidelobe Null), können Sie die obige Gleichung, um für was auch immer Sie brauchen, zu lösen. Im Einzelnen können Sie Folgendes tun: Stellen Sie H (omega) auf den Wert ein, der der Filterantwort entspricht, die Sie bei der Cutoff-Frequenz wünschen. Set Omega gleich der Cutoff-Frequenz. Um eine kontinuierliche Frequenz auf den diskreten Zeitbereich abzubilden, denken Sie daran, dass osga 2pi frac, wobei fs Ihre Abtastrate ist. Finden Sie den Wert von N, der Ihnen die beste Übereinstimmung zwischen der linken und der rechten Seite der Gleichung gibt. Das sollte die Länge des gleitenden Durchschnitts sein. Wenn N die Länge des gleitenden Mittelwerts ist, dann ist eine angenäherte Grenzfrequenz F (gültig für N gt 2) bei der normalisierten Frequenz Ff / fs: Der umgekehrte Wert dieser Formel ist für große N asymptotisch korrekt und hat ungefähr 2-Fehler für N2 und weniger als 0,5 für N4. P. S. Nach zwei Jahren, hier schließlich, was war der Ansatz folgte. Das Ergebnis beruht auf der Annäherung des MA-Amplitudenspektrums um f0 als Parabel (2. Ordnung) nach MA (Omega) ca. 1 (frac - frac) Omega2, die in der Nähe des Nulldurchgangs von MA (Omega) Frac durch Multiplikation von Omega mit einem Koeffizienten, der MA (Omega), ca. 10.907523 (frac-frac) Omega2 ergibt. Die Lösung von MA (Omega) - frac 0 liefert die obigen Ergebnisse, wobei 2pi F Omega. Alle der oben genannten bezieht sich auf die -3dB abgeschnitten Frequenz, das Thema dieser Post. Manchmal ist es zwar interessant, ein Dämpfungsprofil im Stoppband zu erhalten, das vergleichbar ist mit dem eines 1. Ordnung IIR-Tiefpassfilters (Einpol-LPF) mit einer gegebenen -3dB-Grenzfrequenz (ein solcher LPF wird auch Leaky-Integrator genannt, Mit einem Pol nicht genau an DC, aber nah an ihm). Tatsächlich haben sowohl der MA und der 1. Ordnung IIR LPF -20dB / Dekade Slope im Stop-Band (man braucht ein größeres N als das, das in der Figur verwendet wird, N32, um dies zu sehen), während aber MA spektrale Nullen bei Fk hat / N und einer 1 / f-Evelope hat das IIR-Filter nur ein 1 / f-Profil. Wenn man ein MA-Filter mit ähnlichen Rauschfilterungs-Fähigkeiten wie dieses IIR-Filter erhalten möchte und die gleichgeschnittenen 3dB-Grenzfrequenzen anpaßt, würde er beim Vergleich der beiden Spektren erkennen, daß die Stoppbandwelligkeit des MA-Filters endet 3dB unter dem des IIR-Filters. Um die gleiche Stoppbandwelligkeit (d. h. dieselbe Rauschleistungsdämpfung) wie das IIR-Filter zu erhalten, können die Formeln wie folgt modifiziert werden: Ich fand das Mathematica-Skript zurück, wo ich die Unterbrechung für mehrere Filter einschließlich des MA-Werts berechnete. Das Ergebnis basiert auf der Annäherung des MA-Spektrums um f0 als Parabel nach MA (Omega) Sin (OmegaN / 2) / Sin (Omega / 2) Omega 2piF MA (F) ca. N1 / 6F2 (N-N3) pi2. Und Ableitung der Kreuzung mit 1 / sqrt von dort. Ndash Massimo 17. Januar um 2: 08Low-Pass-Filter Dies sind in erster Linie Notizen Es wird nicht in jedem Sinne abgeschlossen sein. Es besteht darin, Fragmente nützlicher Informationen zu enthalten. Pseudocode Der exponentiell gewogene gleitende Mittelwert (EWMA) ist der Name für die wahrscheinlich einfachste digitale Zeitbereichs-Realisierung des (ersten) Tiefpasses auf diskreten Daten. Dieser Filter glättet mit einem sich bewegenden lokalen Durchschnitt, was ihn zu einem trägen Folger des Eingangssignals macht. Intuitiv reagiert sie langsam auf die schnellen Änderungen (den hochfrequenten Anteil), während sie immer noch der Gesamttendenz des Signals (dem niederfrequenten Anteil) folgen. Er wird durch eine Variable (siehe x3b1) gewogen, um seine Empfindlichkeit variieren zu können. In Anwendungen, die in regelmäßigen Abständen (z. B. Sound) abtasten, können Sie x3b1 mit dem Frequenzinhalt in Beziehung setzen. In diesen Fällen wollen Sie oft eine gefilterte Ausgangsserie für eine Eingangsserie berechnen, indem Sie eine Liste durchschleifen, die so etwas wie: oder das Äquivalent macht: Letztere Form kann sich intuitiver / informativer fühlen: die Änderung des gefilterten Ausgangs ist proportional zur Betrag der Änderung und gewogen durch die Filterstärke x3b1. Beide können helfen, zu prüfen, wie die Verwendung der zuletzt gefilterten Ausgabe die Trägheit des Systems hervorruft: Ein kleineres x3b1 (größeres 1-x3b1 in dem ehemaligen) (macht auch für größere RC) bedeutet, dass der Ausgang träger anliegt und weniger Rauschen zeigen sollte Cutoff-Frequenz ist niedriger (überprüfen)). Ein größeres x3b1 (kleineres 1-x3b1) (kleineres RC) bedeutet, dass sich der Ausgang schneller einstellen wird (weniger Trägheit), aber empfindlicher auf Rauschen (da die Grenzfrequenz höher ist) Wo Sie nur möchten, dass der letzte Wert die Speicherung eines großen Arrays vermeiden kann, indem Sie für jedes neue Sample (oft eine Reihe von Zeiten in einer Reihe, um sicherzustellen, dass wir genug einstellen) die folgenden Schritte ausführen. In Fällen von nicht-so-regelmäßiger Probenahme ist x3b1 mehr mit der Geschwindigkeit der Adaption als mit dem Häufigkeitsgehalt verbunden. Sein noch relevantes, aber die Anmerkungen über Frequenzinhalt gelten weniger streng. Sie sollten das Array / den Speicher normalerweise als Float implementieren, auch wenn Sie Ints zurückgeben, um Probleme zu vermeiden, die durch Rundungsfehler verursacht werden. Das meiste Problem: Wenn Alphadifferenz (selbst eine schwebende Multiplikation) kleiner als 1 ist, wird sie in einer (truncatng) Form zu einer ganzen Zahl 0. Wenn zum Beispiel Alpha 0,01 ist, werden Signalunterschiede kleiner als 100 für eine Einstellung von 0 (über eine Ganzzahl-Trunkierung) sorgen, so daß sich der Filter niemals auf den tatsächlichen ADC-Wert einstellen würde. EWMA hat das Wort exponentiell in ihr, weil jede neue gefilterte Ausgabe effektiv alle Werte vor ihr und effektiv mit exponentiell abklingende Gewichte verwendet. Siehe die Wikipedia Links für weitere Diskussion. Ein grafisches Beispiel: Ein Screenshot aus arduinoscope - ein bewegter Graph mit den neuesten Proben auf der linken Seite. Das rohe Signal an der Spitze ist ein paar Sekunden wert eines ADC-Sampling von einem schwimmenden Pin, mit einem Finger berührt es hin und wieder. Die anderen sind Lowpassed Versionen davon, mit zunehmender Stärke. Einige Dinge zu beachten: die langsame exponentielle Anpassung an stufenförmige Reaktionen (ähnlich wie ein Ladekondensator - schnell intially, dann langsamer und langsamer) die Unterdrückung von einzelnen großen Spikes / Abweichungen. Dass es sicher möglich ist, zu hart zu filtern (obwohl diese Beurteilung viel von der Abtastgeschwindigkeit und den Anpassungen / Inhalten / Frequenzen abhängt, die Ihr Zielzweck benötigt). Im zweiten Bild kommt die Vollbereichsschwingung auf halbem Weg nicht so sehr wegen der Filterung, sondern auch vor allem, weil die meisten Rohproben um sie herum an beiden Enden des ADCs-Bereichs gesättigt sind. Auf x3b1, x3c4, und die Cutoff-Frequenz Dieser Artikel / Abschnitt ist ein Stub x2014 wahrscheinlich ein Stapel von halb-sortierten Notizen, ist nicht gut überprüft, so haben möglicherweise falsche Bits. (Fühlen Sie sich frei zu ignorieren, zu fixieren, oder sagen Sie mir) x3b1 ist der Glättungsfaktor, theoretisch zwischen 0,0 und 1,0, in der Praxis meist lt0,2 und oft lt0.1 oder kleiner, weil über, dass Sie kaum noch Filterung. In DSP basiert es oft auf: x394 t. Regelmäßig schriftlich dt. Das Zeitintervall zwischen den Abtastwerten (Reziprokwert der Abtastrate) eine Wahl der Zeitkonstante x3c4 (tau), alias RC (letzteres scheint ein Hinweis auf einen Widerstand-plus-Kondensator-Schaltung, die auch Tiefpass Der Kondensator lädt auf Wenn Sie eine RC in der Nähe von dt youll erhalten Alphas höher als 0,5, und auch eine Cutoff-Frequenz, die in der Nähe der Nyquist-Frequenz ist (passiert bei 0.666 (überprüfen)), die herausfiltert so wenig, dass es den Filter fair macht In der Praxis youll oft wählen eine RC, die mindestens ein paar Vielfache von dt ist, was bedeutet, dass x3b1 ist in der Größenordnung von 0,1 oder weniger. Wenn die Probenahme erfolgt streng regelmäßig, wie es für Sound und viele andere DSP-Anwendungen, Die Cutoff-Frequenz liegt bei 200 Hz, 2000 Hz und 20000 Hz, was für Alpha-Werte von 0,7, 0,2 bzw. 0,024 ergibt. (Bei gleicher Abtastgeschwindigkeit: je niedriger Alpha, desto geringer die Anpassung an neue Werte und desto geringer die effektive Cutoff-Frequenz) (verifizieren) Für einen Tiefpass erster Ordnung: Bei niedrigeren Frequenzen ist das Ansprechen nahezu vollständig flach Frequenz ist die Antwort -3dB (hat begonnen Rückgang in einem weichen Bend / Knie) bei höheren Frequenzen es es fällt bei 6db / Oktave (20dB / Dekade) höherer Ordnung Variationen fallen schneller und haben ein härteres Knie. Beachten Sie, dass es auch eine Phasenverschiebung gibt, die hinter dem Eingang zurückbleibt. Es hängt von der Frequenz, die es beginnt früher als die Amplitude fallen, und wird -45 Grad bei der Knie-Frequenz (überprüfen). Arduino Beispiel Dieser Artikel / Abschnitt ist ein Stub x2014 wahrscheinlich ein Haufen von halb-sortierten Notizen, ist nicht gut überprüft, so haben möglicherweise falsche Bits. (Fühlen Sie sich frei zu ignorieren, zu fixieren, oder sagen Sie mir) Dies ist eine Single-Stück-Speicher-Version, denn wenn Sie interessiert sind nur in den (neuesten) Ausgangswert. Semi-sortierte Frequenzanpassung von Moving Average Filter und FIR Filter Vergleichen Sie den Frequenzgang des gleitenden Durchschnittsfilters mit dem des regulären FIR-Filters. Stellen Sie die Koeffizienten des regulären FIR-Filters als Folge von skalierten 1s ein. Der Skalierungsfaktor ist 1 / filterLength. Erstellen Sie ein dsp. FIRFilter-Systemobjekt, und legen Sie seine Koeffizienten auf 1/40 fest. Um den gleitenden Durchschnitt zu berechnen, erstellen Sie ein dsp. MovingAverage-Systemobjekt mit einem Schiebefenster mit der Länge 40, um den gleitenden Durchschnitt zu berechnen. Beide Filter haben die gleichen Koeffizienten. Der Eingang ist Gaußsches weißes Rauschen mit einem Mittelwert von 0 und einer Standardabweichung von 1. Stellen Sie den Frequenzgang beider Filter mithilfe von fvtool dar. Die Frequenzantworten entsprechen genau, was beweist, dass das gleitende Mittelfilter ein Spezialfall des FIR-Filters ist. Zum Vergleich den Frequenzgang des Filters ohne Rauschen. Vergleichen Sie den Frequenzgang des Filters mit dem des idealen Filters. Sie können sehen, dass der Hauptlappen im Durchlassbereich nicht flach ist und die Wellen im Stopband nicht eingeschränkt sind. Der Frequenzgang des gleitenden Durchschnittsfilters stimmt nicht mit dem Frequenzgang des idealen Filters überein. Um ein ideales FIR-Filter zu realisieren, ändern Sie die Filterkoeffizienten zu einem Vektor, der keine Folge von skalierten 1s ist. Der Frequenzgang des Filters ändert sich und neigt dazu, sich näher an die ideale Filterantwort zu verschieben. Entwerfen Sie die Filterkoeffizienten anhand vordefinierter Filterspezifikationen. Beispielsweise ein FIR-Filter mit einer normierten Grenzfrequenz von 0,1, einer Durchlaßbandwelligkeit von 0,5 und einer Stoppbanddämpfung von 40 dB. Verwenden Sie fdesign. lowpass, um die Filterspezifikationen und die Designmethode zu definieren, um den Filter zu entwerfen. Die Antwort des Filters im Durchlaßbereich ist nahezu flach (ähnlich der idealen Reaktion), und das Stoppband hat Gleichstromgrenzen eingeschränkt. MATLAB und Simulink sind eingetragene Warenzeichen von The MathWorks, Inc. Siehe auch www. mathworks / trademarks für eine Liste anderer Marken, die Eigentum von The MathWorks sind. Weitere Produkt - oder Markennamen sind Warenzeichen oder eingetragene Warenzeichen der jeweiligen Eigentümer. Wählen Sie Ihr LandAls andere haben erwähnt, sollten Sie einen IIR (endlose Impulsantwort) Filter anstatt der FIR (Finite Impulse Response) Filter, die Sie jetzt verwenden. Es gibt mehr dazu, aber auf den ersten Blick werden FIR-Filter als explizite Windungen und IIR-Filter mit Gleichungen implementiert. Das besondere IIR-Filter, das ich viel in Mikrocontrollern verwende, ist ein einpoliges Tiefpaßfilter. Dies ist das digitale Äquivalent eines einfachen R-C-Analogfilters. Für die meisten Anwendungen haben diese bessere Eigenschaften als der Kastenfilter, den Sie verwenden. Die meisten Verwendungen eines Box-Filter, die ich begegnet bin, sind ein Ergebnis von jemand nicht Aufmerksamkeit in der digitalen Signalverarbeitung Klasse, nicht als Ergebnis der Notwendigkeit ihrer besonderen Eigenschaften. Wenn Sie nur wollen, um hohe Frequenzen zu dämpfen, dass Sie wissen, Rauschen sind, ist ein einpoliges Tiefpassfilter besser. Der beste Weg, um ein digitales in einem Mikrocontroller zu implementieren, ist in der Regel: FILT lt - FILT FF (NEW - FILT) FILT ist ein Stück persistenten Zustand. Dies ist die einzige persistente Variable, die Sie benötigen, um diesen Filter zu berechnen. NEU ist der neue Wert, den der Filter mit dieser Iteration aktualisiert. FF ist die Filterfraktion. Die die Schwere des Filters einstellt. Betrachten Sie diesen Algorithmus und sehen Sie, dass für FF 0 der Filter unendlich schwer ist, da sich der Ausgang nie ändert. Für FF 1 ist das eigentlich gar kein Filter, da der Ausgang nur dem Eingang folgt. Nützliche Werte sind dazwischen. Bei kleinen Systemen wählen Sie FF auf 1/2 N, so dass die Multiplikation mit FF als Rechtsverschiebung um N Bits erreicht werden kann. Beispielsweise kann FF 1/16 betragen und das Multiplizieren mit FF daher eine Rechtsverschiebung von 4 Bits. Andernfalls benötigt dieses Filter nur eine Subtraktion und eine Addition, obwohl die Zahlen in der Regel größer als der Eingangswert sein müssen (mehr über die numerische Genauigkeit in einem separaten Abschnitt weiter unten). Ich normalerweise nehmen A / D-Messwerte deutlich schneller als sie benötigt werden und wenden Sie zwei dieser Filter kaskadiert. Dies ist das digitale Äquivalent von zwei R-C-Filtern in Serie und dämpft um 12 dB / Oktave über der Rolloff-Frequenz. Für A / D-Messungen ist es jedoch gewöhnlich relevanter, den Filter im Zeitbereich zu betrachten, indem er seine Sprungantwort betrachtet. Dies zeigt Ihnen, wie schnell Ihr System eine Änderung sehen wird, wenn die Sache, die Sie messen, ändert. Zur Erleichterung der Gestaltung dieser Filter (was nur bedeutet Kommissionierung FF und entscheiden, wie viele von ihnen zu kaskadieren), benutze ich mein Programm FILTBITS. Sie legen die Anzahl der Schaltbits für jede FF in der kaskadierten Filterreihe fest und berechnen die Schrittantwort und andere Werte. Eigentlich habe ich in der Regel laufen diese über mein Wrapper-Skript PLOTFILT. Dies führt FILTBITS, die eine CSV-Datei macht, dann die CSV-Datei. Beispielsweise ist hier das Ergebnis von PLOTFILT 4 4: Die beiden Parameter zu PLOTFILT bedeuten, dass es zwei Filter gibt, die von dem oben beschriebenen Typ kaskadiert sind. Die Werte von 4 geben die Anzahl der Schaltbits an, um die Multiplikation mit FF zu realisieren. Die beiden FF-Werte sind in diesem Fall 1/16. Die rote Spur ist die Einheit Schritt Antwort, und ist die Hauptsache zu betrachten. Dies bedeutet beispielsweise, dass sich der Ausgang des kombinierten Filters auf 90 des neuen Wertes in 60 Iterationen niederschlägt, falls sich der Eingang sofort ändert. Wenn Sie ca. 95 Einschwingzeit kümmern, dann müssen Sie etwa 73 Iterationen warten, und für 50 Einschwingzeit nur 26 Iterationen. Die grüne Kurve zeigt Ihnen den Ausgang einer einzelnen Amplitude. Dies gibt Ihnen eine Vorstellung von der zufälligen Rauschunterdrückung. Es sieht aus wie keine einzelne Probe wird mehr als eine 2,5 Änderung in der Ausgabe verursachen. Die blaue Spur soll ein subjektives Gefühl geben, was dieser Filter mit weißem Rauschen macht. Dies ist kein strenger Test, da es keine Garantie gibt, was genau der Inhalt der Zufallszahlen war, die als der weiße Rauscheneingang für diesen Durchlauf von PLOTFILT ausgewählt wurden. Seine nur, um Ihnen ein grobes Gefühl, wie viel es gequetscht werden und wie glatt es ist. PLOTFILT, vielleicht FILTBITS, und viele andere nützliche Dinge, vor allem für PIC-Firmware-Entwicklung ist verfügbar in der PIC Development Tools-Software-Release auf meiner Software-Downloads-Seite. Hinzugefügt über numerische Genauigkeit Ich sehe aus den Kommentaren und nun eine neue Antwort, dass es Interesse an der Diskussion der Anzahl der Bits benötigt, um diesen Filter zu implementieren. Beachten Sie, dass das Multiplizieren mit FF Log 2 (FF) neue Bits unterhalb des Binärpunkts erzeugt. Bei kleinen Systemen wird FF gewöhnlich mit 1/2 N gewählt, so daß diese Multiplikation tatsächlich durch eine Rechtsverschiebung von N Bits realisiert wird. FILT ist daher meist eine feste Ganzzahl. Beachten Sie, dass dies ändert keine der Mathematik aus der Prozessoren Sicht. Wenn Sie beispielsweise 10-Bit-A / D-Messwerte und N 4 (FF 1/16) filtern, benötigen Sie 4 Fraktionsbits unter den 10-Bit-Integer-A / D-Messungen. Einer der meisten Prozessoren, youd tun 16-Bit-Integer-Operationen aufgrund der 10-Bit-A / D-Lesungen. In diesem Fall können Sie immer noch genau die gleichen 16-Bit-Integer-Opertions, aber beginnen mit der A / D-Lesungen um 4 Bits verschoben verschoben. Der Prozessor kennt den Unterschied nicht und muss nicht. Das Durchführen der Mathematik auf ganzen 16-Bit-Ganzzahlen funktioniert, ob Sie sie als 12,4 feste oder wahre 16-Bit-Ganzzahlen (16,0 Fixpunkt) betrachten. Im Allgemeinen müssen Sie jedem Filterpole N Bits hinzufügen, wenn Sie aufgrund der numerischen Darstellung kein Rauschen hinzufügen möchten. Im obigen Beispiel müsste das zweite Filter von zwei 1044 18 Bits haben, um keine Informationen zu verlieren. In der Praxis auf einer 8-Bit-Maschine bedeutet, dass youd 24-Bit-Werte verwenden. Technisch nur den zweiten Pol von zwei würde den größeren Wert benötigen, aber für Firmware Einfachheit ich in der Regel die gleiche Darstellung, und damit der gleiche Code, für alle Pole eines Filters. Normalerweise schreibe ich eine Unterroutine oder Makro, um eine Filterpol-Operation durchzuführen, dann gelten, dass für jeden Pol. Ob eine Unterroutine oder ein Makro davon abhängt, ob Zyklen oder Programmspeicher in diesem Projekt wichtiger sind. So oder so, ich benutze einige Scratch-Zustand, um NEU in die Subroutine / Makro, die FILT Updates, sondern auch lädt, dass in den gleichen Kratzer NEU war in. Dies macht es einfach, mehrere Pole anzuwenden, da die aktualisierte FILT von einem Pol ist Die NEUE der nächsten. Wenn ein Unterprogramm, ist es sinnvoll, einen Zeiger auf FILT auf dem Weg in, die auf nur nach FILT auf dem Weg nach draußen aktualisiert wird. Auf diese Weise arbeitet das Unterprogramm automatisch auf aufeinanderfolgenden Filtern im Speicher, wenn es mehrmals aufgerufen wird. Mit einem Makro benötigen Sie nicht einen Zeiger, da Sie in der Adresse passieren, um auf jeder Iteration zu arbeiten. Code-Beispiele Hier ein Beispiel für ein Makro wie oben für eine PIC 18 beschrieben: Und hier ist ein ähnliches Makro für eine PIC 24 oder dsPIC 30 oder 33: Beide Beispiele werden als Makros unter Verwendung meines PIC-Assembler-Präprozessors implementiert. Die mehr fähig ist als eine der eingebauten Makroanlagen. Clabacchio: Ein weiteres Thema, das ich erwähnen sollte, ist die Firmware-Implementierung. Sie können eine einpolige Tiefpassfilter-Subroutine einmal schreiben und dann mehrmals anwenden. Tatsächlich schreibe ich normalerweise solch ein Unterprogramm, um einen Zeiger im Gedächtnis in den Filterzustand zu nehmen, dann ihn voranbringen den Zeiger, so daß er nacheinander leicht aufgerufen werden kann, um mehrpolige Filter zu verwirklichen. Ndash Olin Lathrop Apr 20 12 at 15:03 1. Dank sehr viel für Ihre Antworten - alle von ihnen. Ich beschloss, dieses IIR-Filter zu verwenden, aber dieser Filter wird nicht als Standard-Tiefpaßfilter verwendet, da ich die Zählerwerte berechnen und sie vergleichen muss, um Änderungen in einem bestimmten Bereich zu erkennen. Da diese Werte von sehr unterschiedlichen Dimensionen abhängig von Hardware Ich wollte einen Durchschnitt nehmen, um in der Lage sein, auf diese Hardware spezifischen Änderungen automatisch reagieren. Wenn Sie mit der Beschränkung einer Macht von zwei Anzahl von Elementen zu durchschnittlich leben können (dh 2,4,8,16,32 etc), dann kann die Teilung einfach und effizient auf einem getan werden Low-Performance-Mikro ohne dedizierte Division, weil es als Bit-Shift durchgeführt werden kann. Jede Schicht rechts ist eine Macht von zwei zB: Der OP dachte, er hatte zwei Probleme, die Teilung in einem PIC16 und Speicher für seinen Ringpuffer. Diese Antwort zeigt, dass die Teilung nicht schwierig ist. Zwar adressiert es nicht das Gedächtnisproblem, aber das SE-System erlaubt Teilantworten, und Benutzer können etwas von jeder Antwort für selbst nehmen oder sogar redigieren und kombinieren andere39s Antworten. Da einige der anderen Antworten eine Divisionsoperation erfordern, sind sie ähnlich unvollständig, da sie nicht zeigen, wie dies auf einem PIC16 effizient erreicht werden kann. Ndash Martin Apr 20 12 at 13:01 Es gibt eine Antwort für einen echten gleitenden Durchschnitt Filter (auch bekannt als Boxcar-Filter) mit weniger Speicher Anforderungen, wenn Sie dont mind Downsampling. Es heißt ein kaskadiertes Integrator-Kamm-Filter (CIC). Die Idee ist, dass Sie einen Integrator, die Sie nehmen Differenzen über einen Zeitraum, und die wichtigsten Speicher-sparende Gerät ist, dass durch Downsampling, müssen Sie nicht jeden Wert des Integrators zu speichern. Es kann mit dem folgenden Pseudocode implementiert werden: Ihre effektive gleitende durchschnittliche Länge ist decimationFactorstatesize, aber Sie müssen nur um Stateize Proben zu halten. Offensichtlich können Sie bessere Leistung erzielen, wenn Ihr stateize und decimationFactor Potenzen von 2 sind, so dass die Divisions - und Restoperatoren durch Shifts und Masken ersetzt werden. Postscript: Ich stimme mit Olin, dass Sie sollten immer erwägen, einfache IIR-Filter vor einem gleitenden durchschnittlichen Filter. Wenn Sie die Frequenz-Nullen eines Boxcar-Filters nicht benötigen, wird ein 1-poliger oder 2-poliger Tiefpassfilter wahrscheinlich gut funktionieren. Auf der anderen Seite, wenn Sie für die Zwecke der Dezimierung filtern (mit einer hohen Sample-Rate-Eingang und Mittelung es für die Verwendung durch einen Low-Rate-Prozess), dann kann ein CIC-Filter genau das, was Sie suchen. (Vor allem, wenn Sie stateize1 verwenden und den Ringbuffer insgesamt mit nur einem einzigen vorherigen Integrator-Wert zu vermeiden) Theres einige eingehende Analyse der Mathematik hinter der Verwendung der ersten Ordnung IIR-Filter, Olin Lathrop bereits beschrieben hat auf der Digital Signal Processing Stack-Austausch (Enthält viele schöne Bilder.) Die Gleichung für diese IIR-Filter ist: Dies kann mit nur Ganzzahlen und keine Division mit dem folgenden Code implementiert werden (möglicherweise benötigen einige Debugging, wie ich aus dem Speicher wurde.) Dieser Filter approximiert einen gleitenden Durchschnitt von Die letzten K Proben durch Einstellen des Wertes von alpha auf 1 / K. Führen Sie dies im vorherigen Code durch die Definition von BITS auf LOG2 (K), dh für K 16 gesetzt BITS auf 4, für K 4 gesetzt BITS auf 2, etc. (Ill Überprüfung der Code hier aufgelistet, sobald ich eine Änderung und Bearbeiten Sie diese Antwort, wenn nötig.) Antwort # 1 am: Juni 23, 2010, um 4:04 Uhr Heres ein einpoliges Tiefpassfilter (gleitender Durchschnitt, mit Cutoff-Frequenz CutoffFrequency). Sehr einfach, sehr schnell, funktioniert super, und fast kein Speicher Overhead. Hinweis: Alle Variablen haben einen Bereich über die Filterfunktion hinaus, mit Ausnahme des übergebenen newInput Hinweis: Dies ist ein einstufiger Filter. Mehrere Stufen können zusammen kaskadiert werden, um die Schärfe des Filters zu erhöhen. Wenn Sie mehr als eine Stufe verwenden, müssen Sie DecayFactor anpassen (was die Cutoff-Frequenz betrifft), um sie zu kompensieren. Und natürlich alles, was Sie brauchen, ist die beiden Zeilen überall platziert, brauchen sie nicht ihre eigene Funktion. Dieser Filter hat eine Rampenzeit, bevor der gleitende Durchschnitt diejenige des Eingangssignals darstellt. Wenn Sie diese Rampenzeit umgehen müssen, können Sie MovingAverage auf den ersten Wert von newInput anstelle von 0 initialisieren und hoffen, dass der erste newInput kein Ausreißer ist. (CutoffFrequency / SampleRate) einen Bereich zwischen 0 und 0,5 aufweist. DecayFactor ist ein Wert zwischen 0 und 1, in der Regel in der Nähe von 1. Single-precision Schwimmer sind gut genug für die meisten Dinge, ich bevorzuge nur Doppel. Wenn Sie mit ganzen Zahlen bleiben müssen, können Sie DecayFactor und Amplitude Factor in Fractional Integers umwandeln, in denen der Zähler als Integer gespeichert wird und der Nenner eine Ganzzahl von 2 ist (so können Sie Bit-Shift nach rechts als die Nenner, anstatt sich während der Filterschleife teilen zu müssen). Zum Beispiel, wenn DecayFactor 0.99, und Sie Ganzzahlen verwenden möchten, können Sie DecayFactor 0.99 65536 64881. Und dann immer wenn Sie multiplizieren mit DecayFactor in Ihrer Filterschleife, nur verschieben Sie das Ergebnis 16. Für weitere Informationen über dieses, ein ausgezeichnetes Buch thats Online, Kapitel 19 auf rekursive Filter: www. dspguide / ch19.htm PS Für das Moving Average-Paradigma, einen anderen Ansatz für die Einstellung DecayFactor und AmplitudeFactor, die möglicherweise mehr relevant für Ihre Bedürfnisse, können Sie sagen, Sie wollen die vorherigen, etwa 6 Artikeln gemittelt, diskret tun es, fügen Sie 6 Elemente und teilen durch 6, so Können Sie den AmplitudeFactor auf 1/6 und DecayFactor auf (1.0 - AmplitudeFactor) einstellen. Antwortete May 14 12 at 22:55 Jeder andere hat kommentiert gründlich über den Nutzen der IIR vs FIR, und auf Power-of-two-Division. Id nur, um einige Implementierungsdetails zu geben. Das unten genannte funktioniert gut auf kleinen Mikrocontrollern ohne FPU. Es gibt keine Multiplikation, und wenn Sie N eine Potenz von zwei halten, ist die gesamte Division ein-Zyklus-Bit-Verschiebung. Basic FIR-Ringpuffer: Halten Sie einen laufenden Puffer der letzten N-Werte und einen laufenden SUM aller Werte im Puffer. Jedes Mal, wenn eine neue Probe kommt, subtrahieren Sie den ältesten Wert im Puffer von SUM, ersetzen Sie ihn durch das neue Sample, fügen Sie das neue SUM zu SUM hinzu und geben Sie SUM / N aus. Modifizierter IIR-Ringpuffer: Halten Sie einen laufenden SUM der letzten N-Werte. Jedes Mal, wenn ein neues Sample eingeht, SUM - SUM / N, fügen Sie das neue Sample hinzu und geben SUM / N aus. Antwort # 1 am: August 28, 2008, um 13:45 Uhr Wenn Sie 399m lesen Sie Recht, you39re beschreiben einen First-Order IIR-Filter der Wert you39re Subtraktion isn39t der älteste Wert, der herausfällt, sondern ist stattdessen der Durchschnitt der vorherigen Werte. Erstklassige IIR-Filter können sicherlich nützlich sein, aber I39m nicht sicher, was du meinst, wenn Sie vorschlagen, dass der Ausgang ist der gleiche für alle periodischen Signale. Bei einer Abtastrate von 10 kHz liefert das Einspeisen einer 100 Hz-Rechteckwelle in ein 20-stufiges Kastenfilter ein Signal, das für 20 Abtastungen gleichmäßig ansteigt, für 30 sitzt, für 20 Abtastungen gleichmäßig sinkt und für 30 sitzt. Ein erster Ordnung IIR-Filter. Ndash Supercat Aug 28 13 bei 15:31 wird eine Welle, die scharf anfängt zu steigen und allmählich Niveaus in der Nähe (aber nicht auf) das Eingabe-Maximum, dann scharf beginnt zu fallen und schrittweise Niveaus in der Nähe (aber nicht auf) der Eingabe Minimum. Sehr unterschiedliches Verhalten. Ndash Supercat Ein Problem ist, dass ein einfacher gleitender Durchschnitt kann oder auch nicht nützlich sein. Mit einem IIR-Filter können Sie einen schönen Filter mit relativ wenigen Calcs erhalten. Die FIR Sie beschreiben kann Ihnen nur ein Rechteck in der Zeit - ein sinc in freq - und Sie können nicht die Seitenkeulen zu verwalten. Es kann lohnt sich, in ein paar ganzzahlige Multiplikatoren zu werfen, um es eine schöne symmetrische abstimmbare FIR, wenn Sie die Zeitschaltuhren ersparen können. Ndash ScottSeidman: Keine Notwendigkeit für Multiplikatoren, wenn man einfach jede Stufe der FIR entweder den Durchschnitt der Eingabe auf diese Stufe und ihre vorherigen gespeicherten Wert, und dann speichern Sie die Eingabe (wenn man hat Der numerische Bereich, man könnte die Summe anstatt den Durchschnitt verwenden). Ob das besser ist als ein Box-Filter, hängt von der Anwendung ab (die Sprungantwort eines Boxfilters mit einer Gesamtverzögerung von 1ms wird zum Beispiel eine böse d2 / dt-Spitze aufweisen, wenn der Eingang geändert wird, und wieder 1ms später, wird aber haben Die minimal mögliche d / dt für einen Filter mit einer Gesamtverzögerung von 1ms). Ndash supercat Wie mikeselectricstuff sagte, wenn Sie wirklich brauchen, um Ihren Speicherbedarf zu reduzieren, und Sie dont dagegen Ihre Impulsantwort ist eine exponentielle (anstelle eines rechteckigen Puls), würde ich für einen exponentiellen gleitenden durchschnittlichen Filter gehen . Ich nutze sie ausgiebig. Mit dieser Art von Filter, brauchen Sie nicht jeden Puffer. Sie brauchen nicht zu speichern N Vergangenheit Proben. Nur einer. So werden Ihre Speicheranforderungen um einen Faktor von N reduziert. Auch brauchen Sie keine Division für das. Nur Multiplikationen. Wenn Sie Zugriff auf Gleitpunktarithmetik haben, verwenden Sie Fließkomma-Multiplikationen. Andernfalls können ganzzahlige Multiplikationen und Verschiebungen nach rechts erfolgen. Allerdings sind wir im Jahr 2012, und ich würde Ihnen empfehlen, Compiler (und MCUs), mit denen Sie mit Gleitkommazahlen arbeiten können. Abgesehen davon, dass mehr Speicher effizienter und schneller (Sie dont haben, um Elemente in jedem kreisförmigen Puffer zu aktualisieren), würde ich sagen, es ist auch natürlich. Weil eine exponentielle Impulsantwort besser auf die Art und Weise reagiert, wie sich die Natur verhält, in den meisten Fällen. Ein Problem mit dem IIR-Filter fast berührt von Olin und Supercat, aber anscheinend von anderen ignoriert ist, dass die Rundung nach unten führt einige Ungenauigkeiten (und möglicherweise Bias / Trunkierung). Unter der Annahme, dass N eine Potenz von zwei ist und nur ganzzahlige Arithmetik verwendet wird, beseitigt das Shift-Recht systematisch die LSBs des neuen Samples. Das bedeutet, dass, wie lange die Serie jemals sein könnte, wird der Durchschnitt nie berücksichtigen. Nehmen wir z. B. eine langsam abnehmende Reihe (8,8,8,8,7,7,7,7,6,6) an und nehmen an, daß der Durchschnitt tatsächlich 8 ist. Die Faust 7 Probe bringt den Durchschnitt auf 7, unabhängig von der Filterstärke. Nur für eine Probe. Gleiche Geschichte für 6, usw. Jetzt denke an das Gegenteil. Die serie geht auf. Der Durchschnitt bleibt auf 7 für immer, bis die Probe groß genug ist, um es zu ändern. Natürlich können Sie für die Bias korrigieren, indem Sie 1 / 2N / 2, aber das nicht wirklich lösen, die Präzision Problem. In diesem Fall wird die abnehmende Reihe für immer bei 8 bleiben, bis die Probe 8-1 / 2 (N / 2) ist. Für N4 zum Beispiel, wird jede Probe über Null halten den Durchschnitt unverändert. Ich glaube, eine Lösung für das implizieren würde, um einen Akkumulator der verlorenen LSBs halten. Aber ich habe es nicht weit genug, um Code bereit, und Im nicht sicher, es würde nicht schaden, die IIR Macht in einigen anderen Fällen der Serie (zum Beispiel, ob 7,9,7,9 würde durchschnittlich 8 dann). Olin, Ihre zweistufige Kaskade würde auch eine Erklärung brauchen. Halten Sie zwei durchschnittliche Werte mit dem Ergebnis der ersten in die zweite in jeder Iteration eingezogen halten. Was ist der Vorteil davon
No comments:
Post a Comment