Sunday 15 October 2017

Gleitende Durchschnittliche Darstellung


Moving Averages: Strategien 13 Von Casey Murphy. Senior Analyst ChartAdvisor Unterschiedliche Anleger verwenden gleitende Mittelwerte aus verschiedenen Gründen. Einige verwenden sie als ihr primäres analytisches Werkzeug, während andere sie einfach als ein Vertrauensbuilder verwenden, um ihre Investitionsentscheidungen zu sichern. In diesem Abschnitt gut präsentieren ein paar verschiedene Arten von Strategien - die Einbindung in Ihren Trading-Stil ist bis zu Ihnen Crossovers Ein Crossover ist die grundlegendste Art von Signal und wird bei vielen Händlern bevorzugt, weil es alle Emotionen entfernt. Die grundlegendste Art der Crossover ist, wenn der Preis eines Vermögenswertes bewegt sich von einer Seite eines gleitenden Durchschnitt und schließt auf der anderen. Preis-Crossover werden von Händlern verwendet, um Verschiebungen im Impuls zu identifizieren und können als eine grundlegende Ein-oder Ausfahrt-Strategie verwendet werden. Wie Sie in Abbildung 1 sehen können, kann ein Kreuz unterhalb eines gleitenden Durchschnitts den Beginn eines Abwärtstrends signalisieren und würde wahrscheinlich von Händlern als Signal verwendet, um bestehende Longpositionen zu schließen. Umgekehrt kann ein Abschluss über einem gleitenden Durchschnitt von unten den Beginn eines neuen Aufwärtstrends nahelegen. Die zweite Art der Crossover tritt auf, wenn ein kurzfristiger Durchschnitt durchläuft einen langfristigen Durchschnitt. Dieses Signal wird von Händlern verwendet, um zu ermitteln, daß sich das Momentum in einer Richtung verschiebt und daß sich eine starke Bewegung wahrscheinlich annähert. Ein Kaufsignal wird erzeugt, wenn der kurzfristige Durchschnitt über dem langfristigen Durchschnitt liegt, während ein Verkaufssignal durch einen kurzfristigen Durchschnittsübergang unterhalb eines langfristigen Durchschnitts ausgelöst wird. Wie Sie aus dem Diagramm unten sehen können, ist dieses Signal sehr objektiv, weshalb es so beliebt ist. Dreifach-Crossover und das Moving Average-Band Zusätzliche gleitende Mittelwerte können dem Diagramm hinzugefügt werden, um die Gültigkeit des Signals zu erhöhen. Viele Händler werden die fünf-, 10- und 20-Tage gleitenden Durchschnitte auf ein Diagramm setzen und warten, bis der fünftägige Durchschnitt kreuzt oben durch die anderen dieses ist im Allgemeinen das Primärkaufzeichen. Warten auf den 10-Tage-Durchschnitt, um über den 20-Tage-Durchschnitt zu kommen, wird oft als Bestätigung verwendet, eine Taktik, die oft die Anzahl der falschen Signale reduziert. Die Erhöhung der Anzahl der gleitenden Mittelwerte, wie in der Dreifach-Crossover-Methode gesehen, ist eine der besten Möglichkeiten, um die Stärke eines Trends zu messen und die Wahrscheinlichkeit, dass der Trend anhalten wird. Dies bettelt die Frage: Was würde passieren, wenn Sie fügte hinzu, bewegte Durchschnitte Einige Leute argumentieren, dass, wenn ein gleitender Durchschnitt nützlich ist, dann müssen 10 oder mehr noch besser sein. Dies führt zu einer Technik, die als das gleitende durchschnittliche Band bekannt ist. Wie Sie aus der Tabelle unten sehen können, werden viele gleitende Mittelwerte auf das gleiche Diagramm gelegt und werden verwendet, um die Stärke des aktuellen Trends zu beurteilen. Wenn alle gleitenden Mittelwerte sich in die gleiche Richtung bewegen, wird der Trend als stark bezeichnet. Umkehrungen werden bestätigt, wenn die Durchschnitte kreuzen und Kopf in die entgegengesetzte Richtung. Die Reaktionsfähigkeit auf veränderte Rahmenbedingungen wird durch die Anzahl der in den gleitenden Durchschnitten verwendeten Zeitperioden berücksichtigt. Je kürzer die in den Berechnungen verwendeten Zeiträume, desto empfindlicher ist der Durchschnitt auf leichte Preisänderungen. Eines der gebräuchlichsten Bänder beginnt mit einem gleitenden 50-Tage-Durchschnitt und addiert Mittelwerte in 10-tägigen Schritten bis zum endgültigen Durchschnitt von 200. Diese Art von Durchschnitt ist gut, um langfristige Trends / Umkehrungen zu identifizieren. Filter Ein Filter ist jede Technik, die in der technischen Analyse verwendet wird, um das Vertrauen eines bestimmten Handels zu erhöhen. Beispielsweise können viele Anleger beschließen, zu warten, bis eine Sicherheit über einem gleitenden Durchschnitt liegt und mindestens 10 über dem Durchschnitt liegt, bevor sie eine Bestellung aufgeben. Dies ist ein Versuch, um sicherzustellen, dass die Frequenzweiche gültig ist und die Anzahl der falschen Signale zu reduzieren. Der Nachteil über die Verteilung auf Filter zu viel ist, dass einige der Verstärkung aufgegeben wird und es könnte dazu führen, dass das Gefühl, wie Sie verpasst das Boot. Diese negativen Gefühle werden im Laufe der Zeit sinken, während Sie die Kriterien für Ihren Filter ständig anpassen. Es gibt keine festgelegten Regeln oder Dinge zu achten, wenn die Filterung seiner einfach ein zusätzliches Tool, das Ihnen erlaubt, mit Vertrauen zu investieren. Moving Average Envelope Eine andere Strategie, die die Verwendung von gleitenden Durchschnitten enthält, wird als Umschlag bezeichnet. Diese Strategie beinhaltet das Plotten von zwei Banden um einen gleitenden Durchschnitt, gestaffelt um einen bestimmten Prozentsatz. Zum Beispiel wird in der nachstehenden Tabelle eine 5-Hüllkurve um einen 25-Tage-gleitenden Durchschnitt platziert. Händler sehen diese Bänder, um zu sehen, wenn sie als starke Bereiche der Unterstützung oder des Widerstandes fungieren. Beachten Sie, wie die Bewegung oft umgekehrt Richtung nach Annäherung an eine der Ebenen. Ein Preissprung über die Bande kann eine Periode der Erschöpfung signalisieren, und die Händler werden auf eine Umkehrung zum Mitteldurchschnitt achten. Moving-Average Representation of Autoregressive Approximations Wir untersuchen die Eigenschaften einer unendlichen MA-Repräsentation einer autoregressiven Näherung für eine stationäre, Real-Wert-Prozess. Dabei geben wir eine Erweiterung des Wieners-Theorems im deterministischen Approximationsaufbau. Wenn mit den Daten zu tun, können wir diesen neuen Schlüssel Ergebnis verwenden Einblick in die Struktur der unendlichen MA-Darstellungen von Einbau autoregressiven Modellen, bei denen die Reihenfolge steigt mit der Stichprobengröße zu erhalten. Insbesondere geben wir eine einheitliche Schranke für die Schätzung der gleitenden Mittelwertkoeffizienten über autoregressive Approximation, die über alle ganzen Zahlen gleich ist. 423.pdfDavid, Yes, MapReduce soll auf einer großen Datenmenge arbeiten. Und die Idee ist, dass im Allgemeinen die Karte und reduzieren Funktionen sollte nicht kümmern, wie viele Mapper oder wie viele Reduzierer gibt es, die nur Optimierung ist. Wenn Sie sorgfältig über den Algorithmus ich gepostet denken, können Sie sehen, dass es doesn39t Angelegenheit, welche Mapper bekommt, welche Teile der Daten. Jeder Eingabesatz ist für jede reduzierte Operation verfügbar, die es benötigt. Ndash Joe K 18. September um 22:30 Im besten Fall meines Verständnisses gleitende Durchschnitt ist nicht schön Karten MapReduce Paradigma, da seine Berechnung im Wesentlichen Schiebefenster über sortierte Daten ist, während MR Verarbeitung von nicht geschnittenen Bereichen von sortierten Daten. Lösung, die ich sehe, ist wie folgt: a) Um benutzerdefinierte Partitionierer zu implementieren, um zwei verschiedene Partitionen in zwei Durchläufen zu machen. In jedem Lauf erhalten Ihre Reduzierer verschiedene Bereiche der Daten und berechnen gleitenden Durchschnitt, wo passend, werde ich versuchen zu illustrieren: Im ersten Lauf Daten für Reduzierer sollte: R1: Q1, Q2, Q3, Q4 R2: Q5, Q6, Q7, Q8 . Hier werden Sie gleitenden Durchschnitt für einige Qs cacluate. Im nächsten Lauf sollten Ihre Reduzierer Daten wie erhalten: R1: Q1. Q6 R2: Q6. Q10 R3: Q10..Q14 Und caclulate den Rest der gleitenden Durchschnitte. Dann müssen Sie Ergebnisse zu aggregieren. Idee der benutzerdefinierten Partitionierer, dass es zwei Modi der Operation haben wird - jedes Mal in gleiche Bereiche, aber mit einigen Verschiebung. In einem Pseudocode sieht es so aus. Partition (keySHIFT) / (MAXKEY / numOfPartitions) Dabei gilt: SHIFT wird aus der Konfiguration übernommen. MAXKEY-Maximalwert der Taste. Ich nehme zur Vereinfachung an, dass sie mit Null beginnen. RecordReader, IMHO ist keine Lösung, da es auf bestimmte Split beschränkt ist und kann nicht über Splits Grenze gleiten. Eine weitere Lösung wäre, um benutzerdefinierte Logik der Aufteilung der Eingangsdaten (es ist Teil der InputFormat) zu implementieren. Es kann getan werden, um 2 verschiedene Folien, ähnlich wie die Partitionierung zu tun. Beantwortet Sep 17 12 at 8: 59Die Wissenschaftler und Ingenieure Leitfaden für digitale Signalverarbeitung Von Steven W. Smith, Ph. D. Ein enormer Vorteil des gleitenden Mittelfilters besteht darin, dass er mit einem sehr schnellen Algorithmus implementiert werden kann. Um diesen Algorithmus zu verstehen, stellen Sie sich vor, ein Eingangssignal, x, durch ein siebenpunktiges gleitendes Durchschnittsfilter zu führen, um ein Ausgangssignal y zu bilden. Nun wird untersucht, wie zwei benachbarte Ausgangspunkte y 50 und y 51 berechnet werden: Es sind fast dieselben Berechnungspunkte x 48 bis x 53 für y 50 und für y 51 zu addieren. Wenn y 50 bereits berechnet wurde Ist der effizienteste Weg zum Berechnen von y 51: Nachdem y 51 unter Verwendung von y 50 gefunden worden ist, kann y 52 aus der Probe y 51 und so weiter berechnet werden. Nachdem der erste Punkt in y berechnet ist, können alle anderen Punkte mit nur einer Addition und Subtraktion pro Punkt gefunden werden. Dies kann in der Gleichung ausgedrückt werden: Beachten Sie, dass diese Gleichung zwei Datenquellen verwendet, um jeden Punkt in der Ausgabe zu berechnen: Punkte von der Eingabe und vorher berechnete Punkte von der Ausgabe. Dies wird als rekursive Gleichung bezeichnet, dh das Ergebnis einer Berechnung wird in zukünftigen Berechnungen verwendet. (Der Begriff rekursive hat auch andere Bedeutungen, vor allem in der Informatik). Kapitel 19 behandelt eine Vielzahl von rekursiven Filtern genauer. Beachten Sie, dass sich das gleitende, durchschnittliche rekursive Filter sehr von den typischen rekursiven Filtern unterscheidet. Insbesondere haben die meisten rekursiven Filter eine unendlich lange Impulsantwort (IIR), bestehend aus Sinusoiden und Exponentialen. Die Impulsantwort des gleitenden Mittelwertes ist ein Rechteckimpuls (endliche Impulsantwort oder FIR). Dieser Algorithmus ist aus mehreren Gründen schneller als andere digitale Filter. Erstens gibt es nur zwei Berechnungen pro Punkt, unabhängig von der Länge des Filterkerns. Zweitens sind Addition und Subtraktion die einzigen mathematischen Operationen, während die meisten digitalen Filter eine zeitaufwändige Multiplikation erfordern. Drittens ist das Indexierungsschema sehr einfach. Jeder Index in Gl. 15-3 durch Addieren oder Subtrahieren von ganzzahligen Konstanten gefunden, die berechnet werden können, bevor die Filterung beginnt (d. h. p und q). Weiter kann der gesamte Algorithmus mit Ganzzahldarstellung durchgeführt werden. Abhängig von der verwendeten Hardware können ganze Zahlen mehr als eine Größenordnung schneller als der Gleitpunkt sein. Überraschenderweise arbeitet die Ganzzahldarstellung besser als der Gleitkommawert mit diesem Algorithmus, zusätzlich zu dem, was schneller ist. Der Rundungsfehler der Gleitpunktarithmetik kann zu unerwarteten Ergebnissen führen, wenn Sie nicht vorsichtig sind. Stellen Sie sich zum Beispiel ein 10.000 Probensignal vor, das mit diesem Verfahren gefiltert wird. Der letzte Abtastwert im gefilterten Signal enthält den akkumulierten Fehler von 10.000 Additionen und 10.000 Subtraktionen. Dies erscheint im Ausgangssignal als Driftversatz. Integers dont haben dieses Problem, weil es keine Round-off-Fehler in der Arithmetik. Wenn Sie mit diesem Algorithmus Fließkommazahlen verwenden müssen, zeigt das Programm in Tabelle 15-2, wie ein doppelter Präzisionsakkumulator verwendet wird, um diese Drift zu eliminieren. Doppelte Exponentialbewegungsdurchschnitte Explained Händler haben sich auf gleitende Durchschnittswerte verlassen, um zu helfen, Profitablen Ausgängen seit vielen Jahren. Ein bekanntes Problem mit sich bewegenden Durchschnitten ist jedoch die schwere Verzögerung, die in den meisten Arten von gleitenden Durchschnitten vorhanden ist. Der doppelte exponentielle gleitende Durchschnitt (DEMA) liefert eine Lösung durch Berechnen einer schnelleren Mittelungsmethode. Geschichte des doppelten Exponential Moving Average In der technischen Analyse. Bezieht sich der Begriff gleitender Durchschnitt auf einen Durchschnittspreis für ein bestimmtes Handelsinstrument über einen bestimmten Zeitraum. Zum Beispiel kann eine 10-Tage gleitenden Durchschnitt berechnet den Durchschnittspreis eines spezifischen Instruments in den letzten 10 10 Tage ein 200-Tage gleitenden Durchschnitt der Durchschnittskurs der letzten 200 Tage berechnet. Jeden Tag schreitet die Rückblickperiode auf Basisberechnungen der letzten X-Anzahl von Tagen vor. Ein gleitender Durchschnitt erscheint als glatte, geschwungene Linie, die eine visuelle Darstellung des längerfristigen Trends eines Instruments liefert. Schnellere gleitende Durchschnitte, mit kürzeren Rückblickperioden, sind choppierere langsamere gleitende Durchschnitte, mit längeren Rückblickperioden, sind glatter. Da ein gleitender Durchschnitt ein rückwärts gerichteter Indikator ist, ist er rückläufig. Der in Abbildung 1 gezeigte doppelte exponentielle gleitende Durchschnitt (DEMA) wurde von Patrick Mulloy entwickelt, um die Verzögerungszeit zu reduzieren, die bei herkömmlichen Bewegungsdurchschnitten festgestellt wurde. Es wurde erstmals im Februar 1994 eingeführt, Technische Analyse von Stocks amp Commodities Magazin in Mulloys Artikel Glättung von Daten mit schneller bewegenden Durchschnitt. (Für eine Grundierung auf die technische Analyse, werfen Sie einen Blick auf unsere Technische Analyse Tutorial). Abbildung 1: Das Ein-Minuten-Chart des E-mini Russell 2000 Futures-Kontrakt zeigt zwei verschiedene Doppel exponentiellen gleitenden Durchschnitt eine 55-Periode in blau erscheint, Eine 21-Periode in rosa. Berechnen eines DEMA Wie Mulloy in seinem ursprünglichen Artikel erklärt, ist die DEMA nicht nur eine doppelte EMA mit der doppelten Verzögerungszeit einer einzelnen EMA, sondern ist eine zusammengesetzte Implementierung von Einzel - und Doppel-EMAs, die eine andere EMA mit weniger Verzögerung erzeugen als das Original zwei. Mit anderen Worten ist die DEMA nicht einfach zwei EMAs kombiniert, oder ein gleitender Mittelwert eines gleitenden Durchschnitts, ist aber eine Berechnung beider Einzel - und Doppel EMAs. Fast alle Trading-Analyse-Plattformen haben die DEMA als Indikator, der zu den Diagrammen hinzugefügt werden kann. Daher können die Händler die DEMA verwenden, ohne die Mathematik hinter den Berechnungen zu wissen und ohne Code zu schreiben oder Eingang aufweist. Vergleich der DEMA mit traditionellen Bewegungsdurchschnitten Die gleitenden Durchschnitte sind eine der populärsten Methoden der technischen Analyse. Viele Händler verwenden sie, um Trendumkehrungen zu erkennen. Vor allem in einem gleitenden Durchschnitt Crossover, wo zwei gleitende Durchschnitte von verschiedenen Längen auf ein Diagramm gelegt werden. Punkte, wo die gleitenden Durchschnitte kreuzen, können Kauf - oder Verkaufsgelegenheiten bedeuten. Die DEMA kann Händler helfen, Rückschläge früher zu erkennen, weil es schneller ist, auf Veränderungen in der Marktaktivität zu reagieren. Abbildung 2 zeigt ein Beispiel für den e-mini Russell 2000 Futures-Kontrakt. Diese Minute-Diagramm hat vier gleitende Mittelwerte: 21-Periode DEMA (rosa) 55-Periode DEMA (dunkelblau) 21-Periode MA (hellblau) 55-Periode MA (hellgrün) Abbildung 2: Diese 1-minütige Tabelle von Zeigt der e-mini Russell 2000 Futures-Kontrakt die schnellere Reaktionszeit der DEMA bei Einsatz in einem Crossover. Beachten Sie, dass der DEMA-Crossover in beiden Fällen deutlich früher erscheint als die MA-Crossover. Die erste DEMA Crossover erscheint bei 12:29 und die nächste Bar öffnet zu einem Preis von 663,20. Die MA-Crossover, auf der anderen Seite, Formen um 12:34 und die nächsten Bars Eröffnungspreis bei 660,50. Im nächsten Satz von Frequenzweichen erscheint die DEMA-Überkreuzung bei 1:33, und die nächste Leiste öffnet bei 658. Die MA dagegen bildet bei 1:43, wobei sich die nächste Leiste bei 662,90 öffnet. In jedem Fall bietet die DEMA-Überkreuzung einen Vorteil beim Einsteigen in den Trend früher als der MA-Crossover. (Für mehr Einblick, lesen Sie die Moving Averages Tutorial.) Handel mit einem DEMA Die oben genannten gleitenden Durchschnitt Crossover Beispiele veranschaulichen die Wirksamkeit der Verwendung der schnelleren doppelt exponentiellen gleitenden Durchschnitt. Zusätzlich zur Verwendung der DEMA als Standalone-Indikator oder in einem Crossover-Setup kann die DEMA in einer Vielzahl von Indikatoren verwendet werden, wobei die Logik auf einem gleitenden Durchschnitt basiert. Technische Analysewerkzeuge wie Bollinger Bands. Durchschnitt Konvergenz / Divergenz (MACD) und dreifach exponentiellen gleitenden Durchschnitt (TRIX) bewegen basieren durchschnittlichen Typen auf bewegte und kann geändert werden, um eine DEMA an Stelle von anderen traditionellen Arten von gleitenden Durchschnitten zu integrieren. Das Ersetzen der DEMA kann Händler helfen, unterschiedliche Kauf - und Verkaufsgelegenheiten zu lokalisieren, die vor denen liegen, die von den MAs oder EMAs, die traditionell in diesen Indikatoren verwendet werden, zur Verfügung gestellt werden. Natürlich immer in einen Trend eher früher als später führt in der Regel zu höheren Gewinnen. Abbildung 2 verdeutlicht dieses Prinzip - wenn wir die Crossovers als Kauf - und Verkaufssignale nutzen wollten. Würden wir die Trades deutlich früher bei der Verwendung der DEMA Crossover im Gegensatz zu den MA Crossover geben. Bottom Line Trader und Investoren haben lange bewegte Durchschnitte in ihrer Marktanalyse verwendet. Gleitende Durchschnitte sind eine weit verbreitete technische Analyse-Tool, das ein Mittel zur schnellen Anzeige und Interpretation der längerfristige Trend einer bestimmten Handelsinstrument zur Verfügung stellt. Da bewegte Durchschnitte durch ihre Natur sind nacheilende Indikatoren. Ist es hilfreich, den gleitenden Durchschnitt zu optimieren, um einen schnelleren, reaktionsfähigeren Indikator zu berechnen. Der doppelte exponentielle gleitende Durchschnitt bietet Händlern und Investoren einen Überblick über den längerfristigen Trend mit dem zusätzlichen Vorteil, dass er ein schneller gleitender Durchschnitt mit weniger Verzögerungszeit ist. (Für die damit verbundenen Lesen, werfen Sie einen Blick auf Moving Average MACD Combo und Simple Vs. Exponential Moving Averages.)

No comments:

Post a Comment